Communication for maths

On the formal presentation of differentiation - part 2

On writing mathematics

- Maths is not just notation. It is
- turns of phrases and forms of writing;
- logic and organisation in the writing;
(see example styles 1, 2 and 3 below)
- Mathematics proceeds step-by-step, and uses clear argumentation (logic, algebra, etc.)

On writing mathematics

Style 1

1) Let f be a continuous function on a closed interval $[a, b]$ and differentiable on the open interval (a, b). If $f^{\prime}(x)>0$ for all $x \in$ (a, b) then f is increasing on $[a, b]$.

On writing mathematics

Style 2

2) Consider the interval $I=[a, b]$, and let the continuous function f be defined on I.

Given that f is differentiable on the open interval $(a, b), f^{\prime}(x)>0$ for all $x \in(a, b)$ implies f is increasing on $[a, b]$.

On writing mathematics

Style 3

3) We say that a continuous function f is increasing on a closed interval $I=[a, b]$, when $f^{\prime}(x)>0$ for all $x \in(a, b)$, provided that f is differentiable on the open interval (a, b).

On writing mathematics

Logical presentation of steps

Let $x_{1}, x_{2} \in[a, b]$ such that $x_{2}>x_{1}$.
Then $f^{\prime}\left(x_{1}\right)>0 \Rightarrow \lim _{x_{2} \rightarrow x_{1}}\left(\frac{f\left(x_{2}\right)-f\left(x_{1}\right)}{x_{2}-x_{1}}\right)>0$

On writing mathematics

Logical presentation of steps

Therefore $\frac{f\left(x_{2}\right)-f\left(x_{1}\right)}{x_{2}-x_{1}}>0$, implying

$$
f\left(x_{2}\right)-f\left(x_{1}\right)>0
$$

On writing mathematics

Logical presentation of steps

Hence $f\left(x_{2}\right)>f\left(x_{1}\right) \Rightarrow f$ is increasing on $[a, b]$
for all $x_{1}, x_{2} \in[a, b]$

Some terminology and phrasing

1) "Find the stationary points of ..." means
2) "Classify the stationary points of ..." means

Some terminology and phrasing

3) "Find and classify the stationary points of ..." means

Some terminology and phrasing

4) "Find maximum and minimum points of ..." means

Finding and classifying stationary points

Examples
 Consider the following question:

Find the stationary points of

$$
\frac{d y}{d x}=x^{3}+\frac{x^{2}}{2}-2 x-2
$$

Finding and classifying stationary points

Example

What is missing from the following?

$$
y=\frac{1}{3} x^{3}+x^{2}+3 x
$$

$$
y^{\prime}=x^{2}+2 x+3
$$

$$
\therefore \quad x^{2}+2 x+3=0
$$

Finding and classifying stationary points

Example

There was no
justification as to why

$$
y=\frac{1}{3} x^{3}+x^{2}+3 x
$$ we are putting the quadratic equal to

$$
y^{\prime}=x^{2}+2 x+3
$$

zero:

$$
\text { For S.P. } \quad y^{\prime}=0
$$

$$
\therefore \quad x^{2}+2 x+3=0
$$

Finding and classifying stationary points

Example
What is wrong with the following solution?
Solution:

$$
-1+k k \mu
$$

$$
\begin{aligned}
& 3 x^{2}+x-2 \\
& f^{\prime}(-1)=0,(x+1) \text { is factor } \\
& (x+1)(3 x-2)=0 \\
& x=-1,+2 / 3
\end{aligned}
$$

\Rightarrow max at $x=-y 8$ mind t $x=t \xi$ $4=-1 / 2$

Summary about finding and classifying stationary points

- The following are some (not all) general points in the presentation of maths, specifically relating to the above examples:
- No free-standing expressions;
- Justify step;
- No scratch marks or rough work;
- Clean presentation of writing;

Summary about finding and classifying stationary points

- The following are key points in the presentation of finding and classifying stationary points:
- Present the derivative function separately from the fact that it equals zero, i.e. separate the step involving the equation " y ' = ..." from the equation "... $=0 "$
- Say something like, "... For stationary points, $y^{\prime}(x)=$ 0 , hence ..."

Summary about finding and classifying stationary points

- The following are key points in the presentation of finding and classifying stationary points:
- Test for local extrema, and show the test you use; Also test for global extrema where relevant;
- State the value of the extreme points and/or the coordinates of the extreme points as necessary.

All the usual rules of presentation apply

- Reminder of some key points of presentation:
- Clean and clear presentation of solutions;
- Use ".\therefore " or ""hence", or "therefore", or " \Rightarrow ",.. as appropriate;
- Justifying steps where required;
- No free-standing expressions;

All the usual rules of presentation apply

- The most important things in the presentation of maths for the exam are:
- Clean and clear presentation of solutions;
- Use " \because " or ""Hence", or "As such", etc.;
- Justifying steps where required;
- No free-standing expressions;
- Give complete answers at each intermediate stage;
- Aligning the "=" symbol;
- Exact vs approximate values.

Examples

Exercise 1 - Finding and classifying stationary points: Find the errors in the maths presentation of the problem handed out.

Example 1: An optimisation problem: Find the errors in the maths presentation of the problem handed out.

Summary about optimisation

- The following are key points in the presentation of optimisation problems:
- State the domain for the function and the domain of its derivative;
- Test for extrema: Test $d y / d x=0$, and test end points;
- Answer the question. State the value of the maximum volume or minimum surface area, or minimum time, etc.

About the term 1 exams

- The most important things in the presentation of maths for the exam are:
- Clean and clear presentation of solutions;
- Use " \because " or ""Hence", or "As such", etc.;
- Justifying steps where required;
- No free-standing expressions;
- Give complete answers at each intermediate stage;
- Aligning the "=" symbol;
- Exact vs approximate values.

About the term 1 exams

Exam booklets

- You will be given 3 answer booklets
- One booklet will be for solutions to section A questions. Please answer only sec A questions here;
- One booklet will be for solutions to section B, question 1 and question 2. Please answer at most two of these sec B questions here;
- One booklet will be for solutions to section B, question 3 and question 4. Please answer at most two of these sec B questions here.

Appendix

No free-standing expressions

Examples
What is wrong with the following solution?

Solution

$$
\begin{aligned}
& 3 x^{2}+x-2 \\
& \text { Since } f(-1)=0,(x-1) \text { is a factor } \\
& \text { and }(x+1)(3 x+2)=0 \\
& \text { Hence } \quad x=-1,-\frac{2}{3}
\end{aligned}
$$

No freestanding expressions

Examples

The first line is a "free-standing" expression that does not refer to anything.
Solution

What is the first step the answer to?

$$
\begin{aligned}
& 3 x^{2}+x-2 \\
& \text { Since } f(-1)=0,(x-1) \text { is a factor } \\
& \text { and }(x+1)(3 x+2)=0 \\
& \text { Hence } \quad x=-1,-\frac{2}{3}
\end{aligned}
$$

No free-standing expressions

Examples
The first line is a "free-standing" expression that does not refer to anything.

Solution

$$
\longrightarrow \frac{d y}{d x}=3 x^{2}+x-2, \begin{array}{r}
\quad \text { Since } f(-1)=0,(x-1) \text { is a factor } \\
\text { and }(x+1)(3 x+2)=0 \\
\text { Hence } \quad x=-1,-\frac{2}{3}
\end{array}
$$

Give complete answers at intermediate stages;

Example

Examples and exercises

Exercise 1 - Finding and classifying stationary points: Find the errors in the maths presentation of the problem handed out.

Example 2: An optimisation problem
(*volume of a box from the cut-out corners of a rectangle*)

